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Abstract: In this paper, an unscented Kalman filter (UKF) for curvilinear motions in an 
interacting multiple model (IMM) algorithm to track a maneuvering vehicle on a road is 
investigated. Driving patterns of vehicles on a road are modeled as stochastic hybrid systems. 
In order to track the maneuvering vehicles, two kinematic models are derived: A constant 
velocity model for linear motions and a constant-speed turn model for curvilinear motions. For 
the constant-speed turn model, an UKF is used because of the drawbacks of the extended 
Kalman filter in nonlinear systems. The suggested algorithm reduces the root mean squares 
error for linear motions and rapidly detects possible turning motions. 
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1. INTRODUCTON 
 
Recently, the majority of automobile companies are 

developing various driver assistance systems to 
increase vehicle safety and alleviate driver workload. 
The driver assistance systems include adaptive cruise 
control (ACC), lane-keeping support, collision 
warning and collision avoidance, and assisted lane 
changes. The effectiveness of these driver assistant 
systems depends on the interpretation of the 
information arriving from sensors, which provide 
details of the surrounding vehicle environment and of 
the driver-assisted vehicle itself. In particular, all these 
systems rely on the detection and subsequent tracking 
of objects around the vehicle. Such detection 
information is provided by radar, lidar, and vision 
sensor. The assistance systems mentioned above have 
certain objectives that their controllers try to meet. 
Before a controller can make a decision that enables 
the driver to feel natural, the motion of the 
surrounding object must be properly interpreted from 
the available sensor information [2]. 

Fig. 1 shows the configuration of an ACC system. 
The ACC system consists of a driver interface, a radar 
sensor which measures both the distance and speed of 
preceding vehicles, a controller which controls both 
throttle and brake actuators, and actuators [17]. The 
ability to accurately predict the motion of preceding 
vehicles in the ACC environment can improve the 
controller’s ability to adapt smoothly to the behavior 
of those vehicles preceding it. This ability to predict 
motions is dependent on how well the radar of an 
ACC vehicle can track other vehicles. In order to track 
other vehicles using the object information obtained 
from multiple sensors, tracking techniques based on 
the Bayesian approach are usually used [1]. The 
tracking of a maneuvering target is already well-
established topic in the target tracking literature. 

Techniques for tracking maneuvering targets are 
used in many tracking and surveillance systems as 
well as in applications where reliability is the main 
concern [1,6,13,14]. In particular, tracking a 
maneuvering target using multiple models can provide 
better performance than using a single model. A 
number of multiple model techniques to track a 
maneuvering target have been proposed in the 
literature: the multiple-model algorithms [13], the 
interacting multiple model (IMM) algorithm [1,14,15, 
23], the adaptive IMM [7,18], the fuzzy IMM [3,16], 
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and others. 
Generally, target motion models can be divided into 

two subcategories: the uniform motion model and the 
maneuvering model. A maneuvering target moving at 
a constant turn-rate and speed is usually modeled as a 
maneuvering model, and called a coordinated turn 
model [1,4,5,7,14,18]. 

For application to air traffic control, a fixed 
structure IMM algorithm with a single constant 
velocity model and two coordinated turn models was 
analyzed [14]. And, for the tracking of a maneuvering 
target, a validation method of a new type of flight 
mode was presented in [19]. Nabaa and Bishop [19] 
validated a non-constant speed coordinated turn 
aircraft maneuver model by comparing their model 
with the classic Singer maneuver model and a 
constant-speed coordinated turn model using actual 
trajectories. Semerdjiev and Mihaylova [22] discussed 
variable- and fixed-structure augmented IMM 
algorithms, whereas a fixed-structure algorithm only 
was discussed in [14], and applied to a maneuvering 
ship tracking problem by augmenting the turn rate 
error. 

The drawbacks of the interacting multiple model 
algorithms using extended Kalman filters (IMM-EKF) 
are as follows. First, the EKF approximates a non-
Gaussian density with a Gaussian density [24]. 
Second, the IMM approximates the Gaussian mixture 
with a single Gaussian density. If these assumptions 
break down, the IMM-EKF may diverge. In this paper, 
because of these drawbacks of the IMM-EKF, an 
unscented Kalman filter (UKF) [8,21], replacing the 
EKF, is used for the curvilinear model. The algorithm 
itself uses the same IMM logic, but the model-
matched EKF is replaced by the model-matched UKF. 
The objective of this paper is to design an UKF for 
curvilinear motions in an IMM algorithm to track a 
maneuvering vehicle for the driving of an ACC 
vehicle on a road. 

The contributions of this paper are as follows. First, 
the IMM algorithm is provided as a driving algorithm 
for an ACC vehicle in driving on a road. Second, two 
kinematic models for the possible driving patterns of 
vehicles are derived: A constant velocity model for 
linear motions and a constant-speed turn model for 
curvilinear motions are discussed. Third, for the 
constant-speed turn model, an UKF is used because of 
the drawbacks of the EKF. Fourth, the suggested 
algorithm reduces the root mean squares error in the 
case of rectilinear motions and detects the occurrence 
of maneuvering quickly in the case of turning motions. 

This paper is organized as follows: In Section 2, we 
provide the various driving patterns of vehicles. A 
stochastic hybrid system is formulated, and two 
kinematic models are discussed. In Section 3, we 
compare an UKF with an EKF for a constant- speed 
turn model in an IMM algorithm. In Section 4, we 

evaluate the performance of these filters using Monte 
Carlo simulation under the various driving patterns. 
Section 5 concludes the paper. 
 

2. PROBLEM FORMULATION 
  

In this section, after analyzing the driving patterns 
of a vehicle on a road, a stochastic hybrid system in 
the form of an IMM algorithm for tracking the 
preceding vehicle using sensors (radar, lidar, sonar, 
vision, etc) is formulated. Also, two kinematic models 
representing the analyzed driving patterns are 
introduced. 
 
2.1. Driving patterns 

Fig. 2 depicts the various driving patterns of a 
vehicle: straight line and curve, cut-in/out, u-turn, and 
interchange. All of these patterns can be represented 
by a combination of a constant-velocity rectilinear 
motion, a constant-acceleration rectilinear motion, a 
constant angular velocity curvilinear motion, and a 
constant angular acceleration curvilinear motion. As 
kinematic models for describing these motions, two 
stochastic models will be investigated: one for 
rectilinear motion and the other for curvilinear motion. 
These typical driving patterns are described briefly as 
follows: 

i) Straight line and curve: In this situation, the ACC 
vehicle tracks a preceding vehicle that follows straight 
lines and curves on a curved road [10,20]. 

ii) Cut-in/out: The cut-in/out indicates the situation 
in which a maneuvering vehicle cuts in (or out) to (or 
from) the lane while the ACC vehicle is tracking other 
vehicle. In this situation, the tracking of up to three 
surrounding vehicles is assumed: one in front, one to 
the left, and one to the right. In this case, the target 
vehicle changes its motion from a rectilinear motion 
to a curvilinear motion and then back to a rectilinear 
motion. 

iii) U-turn: This situation occurs when the target 
vehicle changes its driving direction by 180° . The u-
turn consists of three routes as follows: The target 
vehicle moves rectilinearly, undergoes a uniform 
circular turning of up to 180°  with a constant yaw 
rate, and then converts to a rectilinear motion in the 
opposite direction. 

iv) Interchange: When the ACC vehicle is passing 
through an interchange, the target vehicle undergoes a 
3-dimensional motion. The target vehicle moves 
rectilinearly, undergoes a uniform circular turning of 
up to 270°  with a constant yaw rate, and then 
converts to a rectilinear motion. In this paper, passing 
an interchange will be simplified by a 2-dimensional 
motion. 

It will be shown in the sequel that a constant-
velocity model will capture both constant velocity and 
acceleration rectilinear motions without and with an 



312 Yong-Shik Kim and Keum-Shik Hong 
 

(a) straight line and curve 
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Fig. 2. Various driving patterns of vehicles. 
 

additional noise term, respectively. On the other hand, 
a constant-speed turn model will cover both constant 
angular velocity and angular acceleration curvilinear 
motions without and with a noise term, respectively. 

2.2. Stochastic hybrid system 
Following the work of Li and Bar-shalom [14], a 

stochastic hybrid system with additive noise is 
considered as follows: 

 
)]()],(,1[),1(,1[             

)](),1(,1[)(
kmkmkkxkg

kmkxkfkx
−−−+

−−=
ν

 

   (1) 
with noisy measurements 
 ( ) [ , ( ), ( )] [ , ( )]z k h k x k m k w k m k= + , (2) 

where ( ) xnx k ∈ℜ  is the state vector including the 
position, velocity, and yaw rate of the vehicle at 
discrete time k, m(k) is the scalar-valued modal state 
(driving mode index) at instant k, which is a 
homogeneous Markov chain with probabilities of 
transition given by 
 { ( 1) | ( )}  ,       , Mj i ij i jP m k m k m mπ+ = ∀ ∈ , (3) 
where {}P ⋅  denotes the probability and M is the set 
of modal states, that is, constant velocity, constant 
acceleration, constant angular rate turning with a 
constant radius of curvature, etc. The considered 
system is hybrid since the discrete event m(k) appears 
in the system. In the driving of ACC vehicle, m(k) 
denotes the driving mode of the preceding vehicle, in 
effect during the sampling period ending at k, that is, 
the time period 1( , ]k kt t− . The event for which a 
mode jm  is in effect at time k is denoted as 

 ( ) { ( ) }j jm k m k m
∆
= = .  (4) 

( ) znz k ∈ℜ  is the vector-valued noisy measurement 
from the sensor at time k, which is mode-dependent. 

[ 1, ( )] nk m k νν − ∈ℜ  is the mode-dependent process 
noise sequence with mean [ 1, ( )]k m kν −  and 

covariance Q[k-1, m(k)]. [ , ( )] znw k m k ∈ℜ  is the 
mode-dependent measurement noise sequence with 
mean [ , ( )]w k m k  and covariance R[k, m(k)]. Finally f, 
g, and h are nonlinear vector-valued functions. 

 
2.3. Two kinematic models 

The concept of using noise-driven kinematic 
models comes from the fact that noises with different 
levels of variance can represent different motions. A 
model with high variance noise can capture 
maneuvering motions, while a model with low 
variance noise represents uniform motions. The 
multiple-models approach assumes that a model can 
immediately capture the complex system behavior 
better than others. 

Two kinematic models for rectilinear and curvilinear 
motions are now derived. First, assuming that 
accelerations in the steady state are quite small (abrupt 
motions like a sudden stop or a collision are not 
covered), linear accelerations or decelerations can be 
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reasonably well covered by process noises with the 
constant velocity model. That is, the constant velocity 
model plus a zero-mean noise with an appropriate 
covariance representing the magnitude of acceleration 
can handle uniform motions on the road. In discrete-
time, the constant velocity model with noise is given by 

21
2

21
2

01 0 0
0 1 0 0 0

( ) ( 1) ( 1)
0 0 1 0
0 0 0 1 0

TT
T

x k x k k
T T

T

ν

        = − + −            

, (5) 

where T is the sampling time (i.e., 0.01 sec in this 
paper), x(k) is the state vector including the position 
and velocity of the preceding vehicle in the 
longitudinal (ξ ) and lateral (η ) directions at discrete 
time k, that is, 
 ( ) [ ( )  ( )  ( )  ( )]x k k k k kξ ξ η η ′=  (6) 
with ξ  and η  denoting the orthogonal coordinates 
of the horizontal plane; and ν  is a zero-mean 
Gaussian white noise representing the accelerations 
with an appropriate covariance Q. If ( )kν  is the 
acceleration increment during the k th sampling period, 
the velocity during this period is calculated by ( )k Tν , 

and the position is altered by 2( ) / 2k Tν . 
Second, a discrete-time model for turning is derived 

from a continuous-time model for the coordinated turn 
motion [1, p. 183]. A constant speed turn is a turn with 
a constant yaw rate along a road of constant radius of 
curvature. However, the curvatures of actual roads are 
not constant. Hence, a fairly small noise is added to a 
constant-speed turn model for the purpose of capturing 
the variation of the road curvature. The noise in the 
model represents the modeling error, such as the 
presence of angular acceleration and non-constant 
radius of curvature. For a vehicle turning with a 
constant angular rate and moving with constant speed 
(the magnitude of the velocity vector is constant), the 
kinematic equations in the ( , )ξ η  plane are 
 ( ) ( )t tξ ωη= − , ( ) ( )t tη ωξ= , (7) 
where ( )tξ  is the normal (longitudinal) acceleration 
and ( )tη  denotes the tangential acceleration, and ω  
is the constant yaw rate ( ω  > 0 implies a 
counterclockwise turn). The tangential component of 
the acceleration is equal to the rate of change of the 
speed, that is, ( ) ( ) / ( ( )) /t d t dt d t dtη η ωξ= = , and the 
normal component is defined as the square of the 
speed in the tangential direction divided by the radius 
of the curvature of the path, that is, 

2 2 2( ) ( ) / ( ) ( ) / ( )t t t t tξ η ξ ω ξ ξ= − = −  where ( )tη =  
( )tωξ . The state space representation of (7) with the 

state vector defined by ( ) [ ( ) ( ) ( ) ( )]x t t t t tξ ξ η η ′=  

becomes 
  ( ) ( )x t Ax t= ,    (8) 
where 

  

0 1 0 0
0 0 0
0 0 0 1
0 0 0

A
ω

ω

 
 − =
 
 
  

. 

The state transient matrix of the system (8) is given by 
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It has been remarked that if the angular rate ω  in (7) 
is time-varying, (9) would be no longer true. In the 
sequel, following the approach in [1, p. 466], a 
“nearly” constant- speed turn model in a discrete-time 
domain is introduced. In this approach, the model 
itself is motivated from (9), but the angular rate is 
allowed to vary. 

A new state vector by augmenting the angular rate 
( )kω  to the state vector of (7) is defined as follows: 

 ( ) [ ( ) ( ) ( ) ( ) ( )]ax k k k k k kξ ξ η η ω ′= , (10) 

where superscript a denotes the augmented value. 
Then, the nearly constant-speed turn model is defined 
as follows [1, p. 467]: 
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Evidently, both (5) and (11) are special forms of (1). 
In addition, it is reasonable to assume that the 
transition between the driving modes of an ACC 
vehicle has the Markovian probability governed by (3). 
Consequently, the kinematic behaviors of an ACC 
vehicle can be suitably described in the framework of 
the stochastic hybrid systems. 
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3. IMM ALGORITHM FOR TRACKING 
 
3.1. The IMM algorithm 

In order to accurately track the motion of preceding 
vehicles in the ACC environment, an IMM algorithm 
is used in this paper. The concept (structure) of the 
IMM algorithm during one cycle is given in [1, p.454] 
and [14]. In this paper two models of the IMM 
algorithm are used: one for rectilinear motion and the 
other for curvilinear motion. The tracking procedure 
of the vehicle in a rectilinear motion using (5) is 
carried out by the standard Kalman filter, which is not 
discussed in this paper. However, for tracking 
curvilinear motions, which requires the 
estimation of ω  with a new augmented 
model (8) in Section 2, an UKF is used. 

Remark 1: When target dynamics are described by 
multiple-switching models, the posterior density of 
the state vector is a mixture density [1]. The EKF 
approximates the mixture components with the 
Gaussian probability density function. The goal of the 
IMM algorithm is to merge all mixture components 
into a single Gaussian distribution in such a way that 
the first and the second moments are matched. The 
main point is that for each dynamic model a separate 
filter is used. In this paper, we use two Kalman- based 
filters for two stochastic models: one for rectilinear 
motion and the other for curvilinear motion. The 
results of these two model-matched filters are mixed 
before filtering. The outputs of the model-matched 
Kalman-based filters at time kt  include: the state 

estimate ˆ ( | )ax k k , covariance ( | )aP k k  and the 
model probability ( )kµ . The overall output of the 
IMM algorithm is then calculated using the Gaussian 
mixture equations. The drawbacks of the IMM 
algorithm using an EKF are as follows. First, the EKF 
approximates a non-Gaussian density by a Gaussian 
density [24]. Second, the IMM algorithm 
approximates the Gaussian mixture by a single 
Gaussian density. If these assumptions break down, 
the IMM algorithm using an EKF may diverge. 
 
3.2. The UKF for the constant-speed turn model 

The nearly constant-speed turn model of (11) can 
be rewritten as follows: 

( ) [ ( 1), ( 1)] ( 1) ( 1)a a a ax k f x k k G k kω ν= − − + − − , (12) 

where the function ( )af ⋅  is known and remains 
unchanged during the estimation procedure. The noise 
transition matrix G(k-1) is the same form as that given 
in (11). Because of the well-known drawbacks of the 
EKF, the UKF for the constant-speed turn model is 
used [8,21]. 

Similarly to the EKF, the UKF is a recursive 
minimum mean square error estimator. But unlike the 
EKF, which only uses the first-order terms in the 

Taylor series expansion of the non-linear 
measurement equation, the UKF uses the true 
measurement model and approximates the distribution 
of the state vector. This state distribution is still 
represented by a Gaussian density, but it is specified 
with a set of deterministically chosen sample (or 
sigma) points. The sample points completely capture 
the true mean and covariance of the Gaussian random 
vector. When propagated though any non-linear 
system, the sample points capture the posterior mean 
and covariance accurately to the second order. The 
main building block of the UKF is the unscented 
transform, described below. 

The unscented transform is a method for calculating 
the statistics of a random vector which undergoes a 
non-linear transformation. Let xnx∈ℜ  be a random 

vector, : yx nnp ℜ →ℜ  a non-linear transformation 
and y = p(x). Assume that the mean and the covariance 
of x are x  and xP , respectively. The procedure for 
calculating the first two moments of y using the 
unscented transform is as follows [8]. 

1) Compute ( 2 1xn + ) sigma points iχ  and their 
weights iW : 

 0 xχ = , 0
x

W
n
κ
κ

=
+

, i = 0, 

 ( ( ) ) ,i x x ix n Pχ κ= + +  1 ,
2( )i

x
W

n κ
=

+
 

    1, , xi n= , 

 ( ( ) ) ,i x x ix n Pχ κ= − +  1 ,
2( )i

x
W

n κ
=

+
 

   1, ,2x xi n n= + , (13) 
where κ  is a scaling parameter for fine tuning the 
higher order moments of the approximation and 
( ( ) )x x in Pκ+  is the ith row or column of the matrix 
square root of ( )x xn Pκ+ . 

2) Propagate each sigma point through the non-
linear function 
 ( )      ( 0, , 2 )i i xp i nζ χ= = . (14) 

3) Calculate the mean and covariance of y as 
follows: 

 
2

0

xn

i i
i

y W ζ
=

= ∑ , 

 
2

0
( )( )

xn

y i i i
i

P W y yζ ζ
=

′= − −∑ . (15) 

Using the unscented transformation, the UKF 
equations for the constant-speed turn model are given 
in Fig. 3. Note that the UKF requires the computation 
of a matrix square root in (13), which can be 
performed using the Cholesky factorization. 

(15)
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Remark 2: In the unscented transformation, on 
which the UKF is based, a set of weighted sigma 
points are deterministically chosen so that certain 
properties of these points match those of the prior 
distribution. Each point is then propagated through a 
non-linear function and the properties of the 
transformed set are calculated. With this set of points, 
the unscented transform guarantees the same 
performance as the truncated second order Gaussian 
filter, with the same order of calculations as an EKF 
but without the need to calculate Jacobians. 

 
4. SIMULATIONS RESULTS 

 
As described in this section, we considered a state 

estimation problem of a vehicle in two dimensions. 
Simulations were executed to compare the performance 
of both IMM algorithms with the EKF and the UKF, 
respectively, for curvilinear motions. The performance 
of the two algorithms was compared with the use of 
Monte Carlo simulations. The maneuvering vehicle 
trajectories were generated using the various patterns 
mentioned in Section 2.1. Two kinematic models were 
used to track the maneuvering vehicle: A constant-
velocity model for rectilinear motion and a constant- 
speed turn model for curvilinear motion. We then 
compare the performance of two different IMM 
algorithms with these two models. 
 
4.1. The driving scenarios 

It was assumed that the vehicle moves rectilinearly 
in the beginning. The target initial positions and 
velocities were differently set for each scenario. The 
single-target track of the maneuvering vehicle was 
also assumed to have been previously initialized and 
that track maintenance was the goal of the IMM 
algorithms. The results for 4 selected scenarios are 
presented, according to the driving patterns, in Fig. 2. 

i) Scenario for straight line and curve: The target 
initial positions and velocities were ( 0x = 0 m, 0y  = 
0 m, 0x  = 28 m/s, 0y  = 28 m/s, ω  = 0° ). Its 
trajectory was a constant velocity between 0 s and 19 
s with a speed of 28 m/s; a turn with a constant yaw 
rate of ω  = 3.74 /s°  between 20 s and 59 s; a 
constant velocity between 60 s and 89 s; a turn with a 
constant yaw rate of ω  = 3.74 /s°  between 90 s 
and 129 s; a constant velocity between 130 s and 149 
s; a turn with a constant yaw rate of ω  = 3.74 /s°  
between 150 s and 200 s. 

ii) Cut-in/out scenario: The target initial positions 
and velocities were ( 0x  = 0 m, 0y  = 20 m, 0x  =  
28 m/s, 0y  = 0 m/s, ω  = 0° ). Its trajectory was a 
straight line between 0 s and 19 s with a speed of 28 
m/s; a turn with a constant yaw rate of ω  = 3.74 /s°  
between 20 s and 39 s; a constant velocity between 40 

s and 41 s with a speed of 28 m/s; a turn between 42 s 
and 63 s with a yaw rate of ω  = 3.74 /s° ; a straight 
line between 64 s and 134 s with a speed of 28 m/s; a 
turn with a constant yaw rate of ω  = 3.74 /s°  
between 135 s and 154 s; a constant velocity between 
155 s and 159 s with a speed of 28 m/s; a turn 
between 160 s and 179 s with a yaw rate of ω  = 3.74 

/s°  and a straight line between 180 s and 200 s. 
iii) U-turn scenario: The target initial positions and 

velocities were ( 0x  = 10 m, 0y  = 10 m, 0x  = 28 
m/s, 0y  = 0 m/s, ω  = 0° ). This scenario included 

Initialization: ˆ (0 | 0)ax , (0 | 0)aP  with k = 1 
Sigma points and weights: 

( 1| 1)i k kχ − − , iW  ( 0, ,2i n= ) 
Time-update equations: 

predicted sigma points 
 ( | 1) [ ( 1| 1), ( 1)]a

i ik k f k k kχ χ ω− = − − −   
 predicted mean and covariance 
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0
ˆ ( | 1) ( | 1)

n
a

i i
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x k k W k kχ
=

− = −∑ , 

2

0
( | 1) [ ( | 1)

      ( | 1)][ ( | 1) ( | 1)]

n
a a

i i
i

a a
i

P k k Q W k k

x k k k k x k k

χ

χ
=

− = + −

′− − − − −

∑

 predicted measurement sigma points  
 ( | 1) [ ( | 1), ( )]i ik k h k k kχ ωℑ − = −   
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a non-maneuvering driving mode during scans from 1 
s to 60 s with a speed of 28 m/s, a 180 ° -turn, lasting 
from scan 61 s to 145 s with a yaw rate of ω  = 3.74 

/s° , and a non-maneuvering driving mode from scan 
146 s to 200 s.  

iv) Interchange scenario: The target initial positions 
and velocities were ( 0x  = 0 m, 0y  = 0 m, 0x  = 28 
m/s, 0y  = 0 m/s, ω  = 0° ). This scenario included 
a non-maneuvering driving mode during scans from 1 
s to 40 s with a speed of 28 m/s, a 270° -turn, lasting 
from scan 41 s to 168 s with a yaw rate of ω  = 3.74 

/s° , and a non-maneuvering driving mode from scan 
169 s to 200 s. The maneuvering vehicle speed was 28 
m/s. 
 
4.2. Parameters used in the design 

The parameters used in the design are listed here. 
Subscripts “CV” and “CST” stand for “constant 
velocity” and “constant speed turn,” respectively. The 
initial yaw rate of the driving scenarios was (0)ω  = 
3 /s° . The error covariances of the initial state and 
covariances of process noise were as follows: 
CV mode: KF (0) diag{100  100  100  100}P = , 

KF 2(0.001) IQ = , 

CST mode: EKF (0)P UKF(0)P=  

  2diag{100  100  100  100  }ωσ= , 
EKF UKF 2 2 2 2 2diag{(0.25)   (0.25)   (0.25)   (0.25)   }ωQ Q σ= =

where (0.01) /sωσ = ° . The measurement noise 
covariance matrix was calculated as 10mξσ =  and 

10mησ = . 
The transition probabilities for the IMM algorithms 

using the EKF and the UKF, respectively, were 
represented in the Markov chain transition matrix 

 EKF UKF 0.95 0.05
0.05 0.95ij ij ijπ π π
 

= =  
 

. 

The initial mode probability vectors µ  were chosen 
as follows: 

 EKF UKFµ µ= =
0.5
0.5
 
 
 

. 

 
4.3. Performance evaluation and analysis 

The RMSE of each state component was chosen as 
the measure of performance. The performance of the 
IMM algorithm with an EKF and that of the IMM 
algorithm with an UKF are shown in Fig. 4 - Fig. 11, 
where the RMSE in the position and the velocity are 
plotted. The results presented here are based on 100 
Monte Carlo runs. First of all, it is evident that the 
suggested algorithm has almost equal position and 
velocity estimation accuracy for all scenarios. The  

0 50 100 150 200
10

15

20

25

30

35

40

45

50

Time (s)

RM
S v

elo
cit

y e
rro

r (m
/s)

 EKF
 UKF
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position RMSE of the IMM with an UKF is evidently 
superior to that of the IMM with an EKF. This is 
because, unlikely EKF, UKF does not approximate 
nonlinear functions but directly propagates mean and 
covariance through the nonlinear system equation. In 
addition, the IMM algorithm with an UKF is 
characterized by lower-peak dynamic errors and a 
shorter response time. These conclusions were 
confirmed by the RMSE plot presented in Figs. 4-11, 
respectively. 
 

5. CONCLUSIONS 
 

In this paper, an interacting multiple model 
algorithm with an UKF, as a tracking algorithm, to 
track maneuvering vehicles on a road was designed. 
As models to track the maneuvering vehicles, two 
kinematic models were derived: The constant velocity 
model for linear motion and the constant-speed turn 
model for curvilinear motion. For constant-speed turn 
model, an unscented Kalman filter was used because 
of the drawbacks of the extended Kalman filter in 
nonlinear systems. The suggested algorithm reduced 
the root mean square error for linear motions, and it 
could rapidly detect possible turning motions. 
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